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Abstract
We study character generating functions (character generators) of simple Lie
algebras. The expression due to Patera and Sharp, derived from the Weyl
character formula, is first reviewed. A new general formula is then found. It
makes clear the distinct roles of ‘outside’ and ‘inside’ elements of the integrity
basis, and helps determine their quadratic incompatibilities. We review, analyse
and extend the results obtained by Gaskell using the Demazure character
formulae. We find that the fundamental generalized-poset graphs underlying
the character generators can be deduced from such calculations. These graphs,
introduced by Baclawski and Towber, can be simplified for the purposes of
constructing the character generator. The generating functions can be written
easily using the simplified graphs, and associated Demazure expressions. The
rank-two algebras are treated in detail, but we believe our results are indicative
of those for general simple Lie algebras.

PACS number: 02.20.Sv
Mathematics Subject Classification: 17B10, 17B81

1. Introduction

Characters are important tools in the representation theory of Lie groups and algebras, and
so are relevant to many physical applications. Generating function techniques are powerful
and general, and have been usefully applied in many areas of mathematics and mathematical
physics.

Combining characters and generating functions leads to the study of character generators
[21], the generating functions of characters. We will report results on the character generators
for the irreducible, integrable, highest-weight representations of finite-dimensional, simple
Lie algebras.

Much work has been done on these character generators, and on other generating functions
relevant to Lie algebras (see [22] for a brief summary). Our emphasis will be on general
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results, valid for all simple Lie algebras and expressed in terms of structures common to
them1. Relevant highlights of past research include the papers by Patera and Sharp [21],
Stanley [23], King [15], Baclawski [1], King and El-Sharkaway [16, 17], and Baclawski and
Towber [2].

Patera and Sharp [21] introduced the character generator, and used the Weyl character
formula to write a general formula for it. While it is general, the Patera–Sharp formula has
the same drawbacks as its summand, the Weyl character formula. It involves positive and
negative terms that cancel, and a sum over the Weyl group. The Weyl group sum is enormous
for all but the lowest rank algebras. In the first of two parts of this paper, starting from the
Patera–Sharp formula, we will derive a general formula for the character generator that does
not involve that sum.

The first drawback still applies to the new formula, however. To write non-negative
formulae, a more microscopic point of view helps. The character generator is a generating
function for characters, but characters are themselves generating functions for weight
multiplicities. Combinatorial methods for the calculation of these multiplicities are well
known. In particular, methods involving Young tableaux and variants are very efficient.
Stanley [23] was the first to apply them to the character generator. In particular, he proved a
formula for the Ar

∼= su(r + 1) character generator involving standard shifted Young tableaux.
Soon afterwards, King [15] adapted Stanley’s work to the case Cr

∼= sp(2r).
Most importantly for us, these standard shifted Young tableaux encode a partially ordered

set, or poset. The poset structure of the character generator was made explicit by Baclawski
[1]. He proved combinatorial formulae for the character generators of Ar,Cr (and U(N)) in
terms of poset objects related to the relevant tableaux.

King and El-Sharkaway generalized these results to all the classical algebras in [16, 17],
using generalized standard Young tableaux. This work is very, but not completely, general:
besides the classical simple Lie algebras Ar, Br, Cr,Dr , there are also the exceptional ones
E6, E7, E8, F4,G2. The notion of standard Young tableau was not general enough to include
the exceptional Lie algebras2.

Baclawski and Towber [2] studied the simplest exceptional algebra, G2. They were able
to construct the character generator, and found that a generalization of a poset was relevant.
This generalized-poset structure is important, but it was revealed by a construction specific to
G2, related to the octonions. A truly general construction was therefore not found.

Meanwhile, however, new general methods were applied to the problem. The Demazure
character formulae [6] are valid for all simple Lie algebras (and others), and lead directly
to non-negative expressions for the characters. Gaskell [9] wrote a general formula for the
character generator as a Demazure operator acting on the highest-weight generating function
(see (83)), and calculated several examples3.

In the second part of this paper, we will push Gaskell’s methods, and apply Demazure
character formulae to the character generator. Most importantly, we will also search for the
underlying generalized-poset structure of the character generator. By combining the Gaskell–
Demazure techniques with the generalized-poset structure, we make progress. While our
calculations focus on the simple Lie algebras of rank two, we believe that our results indicate
those for all simple Lie algebras. We are able to conjecture a general non-negative formula
for the character generator of an arbitrary simple Lie algebra.

1 Such relations are sometimes called universal.
2 More recently, however, Littelmann has provided such generalizations, in the form of minimal defining chains of
elements of the Weyl group [18], and also in terms of so-called Lakshmibai–Seshadri paths and root operators [19].
3 Actually, Gaskell was unaware of Demazure’s work. Remarkably, he re-discovered some of the Demazure formulae
independently, in order to apply them to character generators.
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The layout of the paper is as follows. In the following section, we first review the
derivation of the Patera–Sharp formula from the Weyl character formula, and then derive a
new general formula from the Patera–Sharp one. It makes clear the distinct roles of the inside
and outside generators of the integrity basis for the terms of the character generator. As we
show in section 3, it can also serve as a guide to the incompatible products (consequences
of syzygies) of the elements of the integrity basis. In section 4, we review the Demazure
character formulae, and apply them to the construction of character generators, following
Gaskell. Simple, non-negative expressions are found for the character generators of all the
rank-two simple Lie algebras. In section 5, the poset and generalized-poset structures of
character generators are reviewed, and then applied to our rank-two results. We simplify
the generalized-poset graphs introduced by Baclawski and Towber, and introduce edge labels
for the new graphs (dubbed character-generator graphs). These edge labels are expressed
in terms of Demazure operators, and so can be simply determined. Consequently, we are
able to write a formula that is valid for all the rank-two algebras, and others, in terms of a
so-called fundamental-orbit poset and Demazure quantities. We conjecture that this formula
is universal, i.e. applicable to all simple Lie algebras. Section 6 is our conclusion.

2. Character generators from the Weyl character formula

Let X(L, a) denote the generator (generating function) for the characters of a fixed simple Lie
algebra Xr , of rank r. It is defined by [21]

X(L, a) :=
∑
λ∈P�

Lλ chλ(a), (1)

where the character of the integrable, irreducible representation R(λ) of highest weight λ is

chλ(a) =
∑
σ∈P

multλ(σ )aσ . (2)

Two sets of indeterminate variables are used. We write

Lλ = L
∑

i λi�
i

:= L
λ1
1 · · · Lλr

r (3)

to keep track of the highest weights of representations, and aµ := a
µ1
1 · · · aµr

r to record the
weights with nonvanishing multiplicities in those representations. In (1), multλ(σ ) is the
multiplicity of weight σ in R(λ).

The fundamental weights are the �j , and the set thereof will be denoted by F. The set of
integral weights of Xr is

P :=
{

r∑
i=1

λi�
i |λi ∈ Z

}
, (4)

i.e., the set of weights with integer Dynkin labels λi . P� ⊂ P will be the set of dominant
weights

P� :=
{

r∑
i=1

λi�
i |λi ∈ Z�

}
, (5)

with non-negative integer (semi-natural) Dynkin labels. Similarly, P> ⊂ P will denote the
set of weights

P> :=
{

r∑
i=1

λi�
i |λi ∈ Z>

}
, (6)
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with positive integer (natural) Dynkin labels. We will also sometimes use the notation

λ =
r∑

i=1

λi�
i =: (λ1, λ2, . . . , λr). (7)

The set of weights of representation R(λ) will be indicated by

Pλ := {µ ∈ P |multλ(µ) � 1}. (8)

The Weyl formula for the character of R(λ) is

chλ(a) =
∑
w∈W

awλ
∏

α∈�+

(1 − a−wα)−1

=
∏

α∈�+

(1 − a−α)−1
∑
w∈W

(det w)aw·λ. (9)

W is the Weyl group of Xr,�+ the set of its positive roots, and w · λ = w(λ + ρ) − ρ is the
shifted action of the Weyl group element w ∈ W . The Weyl vector is denoted as

ρ = 1

2

∑
α∈�+

α = �1 + �2 + · · · + �r =
∑
�∈F

�. (10)

The key observation of [21] is that if the Weyl character formula (9) is used, the sum over
P� in (1) can be done, yielding the Patera–Sharp formula

X(L, a) =
∏

α∈�+

(1 − a−α)−1
∑
w∈W

awρ−ρ(det w)
∏
�∈F

(1 − L�aw�)−1. (11)

This is already a nice, general result. However, the sum over the Weyl group is daunting
for any but the smallest Lie algebras. Furthermore, division by the Weyl denominator∏

α∈�+
(1 − a−α)−1 makes direct computation quite difficult.

However, if we factor out a common denominator, call it Z, things improve somewhat.
As is usual, let Wλ indicate the set of weights in the Weyl orbit of λ. Then we can write

X(L, a) =
∏
�∈F

∏
ϕ∈W�

(1 − L�aϕ)−1Y =: Z−1Y, (12)

with

Y =
∏

α∈�+

(1 − a−α)−1
∑
w∈W

awρ−ρ(det w)
∏
�∈F

∏
σ∈W�\{w�}

(1 − L�aσ ). (13)

It is well known that the characters may be written as integer polynomials of the
fundamental characters. We therefore expect that the integrity basis IX will be

IX = {L�aϕ | � ∈ F, ϕ ∈ P�}. (14)

That is, we expect that the character generator X can be written as a rational function of the
elements of IX. For the integrity-basis element L�aϕ , � and ϕ will be known as its shape
(or its highest weight) and its weight, respectively.

Clearly, it is the numerator Y that encodes the truly nontrivial information carried by
a character generator X. The denominator Z tells us only that the ‘outside weights’ of the
fundamental representations determine a subset

Iout = {L�aϕ | � ∈ F, ϕ ∈ W�} (15)

of the integrity basis IX for the terms of X. The elements of Iout and Iin := IX\Iout will be
called outside and inside generators, respectively.
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Another helpful observation is that the terms in the sum of (13) are simply related to each
other. Let ŵ denote an ‘operator’ with action

ŵ(Lνaµ) := Lνawµ, (16)

for any weights ν, µ. Then we can write

Y =
∏

α∈�+

(1 − a−α)−1
∑
w∈W

awρ−ρ(det w)ŵ(Y), (17)

where we have defined

Y :=
∏
�∈F

∏
σ∈W�

(1 − L�aσ ) (18)

and the shorthand

W� := W�\{�}. (19)

Now, comparing with the Weyl formula (9), we see that

ĉh :=
∏

α∈�+

(1 − a−α)−1
∑
w∈W

awρ−ρ(det w)ŵ

=
∑
w∈W

ŵ
∏

α∈�+

(1 − a−α)−1 (20)

acts as follows:

ĉh(aλ) = chλ(a). (21)

Therefore, we get

Y = ĉh(Y) = ĉh

∏
�∈F

∏
σ∈W�

(1 − L�aσ )

 . (22)

This formula shows that we can decompose Y into characters,

Y =
∑

µ∈P�

yµ(L) chµ. (23)

The coefficients yµ(L) will be polynomials in the Lj = L�j

, with integer coefficients. To
evaluate Y in this form, we use the shifted-Weyl (anti-)symmetry of the characters:

chλ = (det w) chw·λ. (24)

If we define a partition function Kµ(L) as follows4:

Y(L, a) =
∏
�∈F

∏
σ∈W�

(1 − L�aσ ) =:
∑
τ∈P

Kτ (L)aτ , (25)

then the desired coefficients can be computed using

yµ(L) =
∑
w∈W

(det w)Kw·µ(L). (26)

This equation says that the yµ can be calculated by first expanding Y , using its definition (see
equation (18)). Each term obtained with a-dependence aϕ can be Weyl-transformed using
the shifted action, so that the result aν has ν + ρ either in P>, or on its boundary (i.e. having
at least one vanishing Dynkin label). In the latter case, the term should be dropped. In the
former case, it contributes with an extra factor of det w, where w is the Weyl group element

4 Here we imitate the definition of the Kostant partition function. See section 25.2 of [8], for example.
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used. All terms aν so collected, with ν ∈ P�, signal a contribution of chν to Y. We hope that
the examples worked through in the following section will make the procedure clear.

Formally, then, the answer is

Y(L, a) =
∑
ν∈P�

chν(a)
∑
w∈W

(det w)Kw·ν(L), (27)

so that the character generator is

X(L, a) =


∏
�∈F

ϕ∈W�

(1 − L�aϕ)


−1 ∑

ν∈P�

chν(a)
∑
w∈W

(det w)Kw·ν(L). (28)

2.1. Examples

2.1.1. A1. For Xr = A1, there is only one fundamental weight, �1, and we have

Z = (1 − L�1
a�1

)(1 − L�1
a−�1

). (29)

Since Y = (1 − L�1
a−�1

), we have

Y = 1 − L�1
ch−�1 , (30)

by (22). But ch−�1 = −ch−�1 = 0, by (24), so that Y = 1. Finally, we have the well-known
result

X(L, a) = [(
1 − L�1

a�1)(
1 − L�1

a−�1)]−1
. (31)

2.1.2. A2.

Z = (
1 − L�1

a�1)(
1 − L�1

a−�1+�2)(
1 − L�1

a−�2)
× (

1 − L�2
a�2)(

1 − L�2
a�1−�2)(

1 − L�2
a−�1)

, (32)

and

Y = (
1 − L�1

a−�1+�2)(
1 − L�1

a−�2)(
1 − L�2

a�1−�2)(
1 − L�2

a−�1)
. (33)

From (22), expanding Y and applying ĉh gives

Y = 1 − L�1
(ch−�1+�2 + ch−�2) − L�2

(ch�1−�2 + ch−�1) + L2�1
ch−�2 + L2�2

ch−�2

+ L�1+�2
(1 + ch−2�1+�2 + ch�1−2�2 + ch−�1−�2)

−L2�1+�2
(ch−�2 + ch−2�1) − L�1+2�2

(ch−�1 + ch−2�2)

+ L2�1+2�2
ch−�1−�2 . (34)

Any term chµ with a Dynkin label µi = −1 vanishes, since if ri denotes the primitive reflection
related to the simple root αi , then ri ·µ = µ. Equation (24) then tells us that chµ = −chµ = 0.
The expression immediately simplifies to

Y = 1 + L�1+�2
(1 + ch−2�1+�2 + ch�1−2�2) − L2�1+�2

ch−2�1 − L�1+2�2
ch−2�2 . (35)

But r1 · (−2�1) = −�2 and r2 · (−2�2) = −�1, so the last two terms vanish. Also,
r1 · (−2�1 + �2) = r2 · (�1 − 2�2) = 0, so that we obtain

Y = 1 − L�1+�2
. (36)

Finally, we can write

X = Z−1
[
1 − L�1+�2]

, (37)

with Z given by (32), in agreement with the known result [21].
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2.1.3. B2. The simple roots are α1 = 2�1 − 2�2 and α2 = −�1 + 2�2. The Weyl orbits of
the fundamental weights,

W�1 = {±�1,±(−�1 + 2�2)}
W�2 = {±�2,±(�1 − �2)}, (38)

determine both Z and Y immediately. By (22), we find

Y = 1 + L�1 − L�1+�2
ch�2 + L�1+2�2

+ L2�1+2�2
. (39)

Using

ch�2 = a�2
+ a−�1+�2

+ a−�2
+ a�1−�2

, (40)

we have checked that this answer agrees with the known result [21].

2.1.4. G2. The simple roots are α1 = 2�1 − 3�2 and α2 = −�1 + 2�2. The Weyl orbits of
the fundamental weights are

W�1 = {±�1,±(�1 − 3�2),±(2�1 − 3�2)},
W�2 = {±�2,±(�1 − �2),±(�1 − 2�2)}. (41)

By (22), expanding Y and applying ĉh gives

Y = 1 + L�1
+ L�2

+ L3�1+3�2
+ L�1+4�2

+ L3�1
+ L4�1+3�2

+ L�1+�2
+ L�1+3�2

+ L�1+2�2
+ L3�1+2�2

+ L4�1+4�2
+ L2�1+4�2

+ L3�1+4�2
+ L3�1+�2

+ L2�1

+
(
L3�1+4�2

+ L2�1+4�2
+ L�1

+ L2�1
+ 2L2�1+2�2 − L3�1+�2 − L�1+3�2)

ch�2

+
(
L3�1+2�2

+ L�1+2�2 − L2�1+�2 − L2�1+3�2)
ch�1

+ L2�1+2�2
ch�1+�2 − (

L�1+�2
+ L2�1+�2

+ L3�1+3�2
+ L2�1+3�2)

ch2�2 (42)

after applying (24). When the required characters are substituted, this expression agrees with
the known result [12].

3. Integrity basis and incompatibilities

The characters can be generated by an integrity basis subject to certain relations. The basis is
given in (14). For a fixed simple Lie algebra, the character of any irreducible representation
can be written as a non-negative integer polynomial in these basis elements.

Important relations can be expressed as incompatibilities, quadratic products of basis
elements that do not appear in any of the monomials just mentioned. Here we show how the
new formula (28) can be used as a guide to the incompatibilities. A different method was
described in [13].

Since the outside and inside generators (Iin := IX\Iout) play different roles in generating
characters, it will be useful to split the fundamental characters into inside and outside parts,
by writing

ch�(a) =: O�(a) + I�(a). (43)

Here we denote the orbit sum by

Oλ(a) =
∑

σ∈Wλ

aσ . (44)
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The numerator Y contains the required information. Using (22), we will expand Y up to
terms quadratic in the Li :

Y = Y(0) + Y(1) + Y(2) + · · · = ĉh(Y (0) + Y (1) + Y (2) + · · · ). (45)

Clearly,

Y(0) = Y (0) = 1. (46)

The linear term is

Y(1) = −ĉh

∑
�∈F

∑
φ∈W�

L�aφ

 = ĉh

(∑
�∈F

L�(a� − O�(a))

)
; (47)

see (44). We now use the identity

ĉh(aµOλ(a)) = chµ(a)Oλ(a), (48)

which can be proved easily from the second line of (20). Here we only need to consider µ = 0,
and we find

Y(1) =
∑
�∈F

L�(ch�(a) − O�(a))

=:
∑
�∈F

L�I�. (49)

The result shows explicitly that the inside generators all appear linearly in X:

Y(1) =
∑
ι∈Iin

ι, (50)

for all simple Lie algebras.
The quadratic term can be expressed as

Y (2) =
∑
�∈F

L2�
∑

φ,φ′∈W�
φ′ �=φ

aφ+φ′
+

∑
�,�′∈F
� �=�′

L�+�′ ∑
φ∈W�

φ′∈W�′

aφ+φ′
. (51)

This leads to the expression

Y(2) =
∑

�,�′∈F
�′ �=�

(I�I�′ − S�,�′)L�+�′
+

∑
�∈F

(
ch2� − S�,� + I2

� − O2�

)
L2�. (52)

Here we have defined

S�,�′ := ch� ch�′ − ch�+�′ . (53)

Similar expressions for terms Y(n) with n > 2 are complicated. We will focus on the
quadratic term Y(2) below, and treat each of the rank-two simple Lie algebras in turn.

3.1. Examples

3.1.1. A2. From subsection 2.1.2,

Y(2) = −L1L2. (54)

This result agrees with that calculated using (51).
For any algebra Ar, I� = 0 for all � ∈ F . Using

ch�1 ch�2 = ch�1+�2 + 1,

(ch�1)2 = ch2�1 + ch�2 , (ch�2)2 = ch2�2 + ch�1 ,

ch2�1 − O2�1 = ch�2 , ch2�2 − O2�2 = ch�1 ,

(55)

(52) gives the same result.
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The interpretation of the result (54) is simple. There is one incompatible quadratic
product, but it is not uniquely determined. Any of the three following possibilities works:

(L1a1)
(
L2a

−1
1

)
,

(
L1a

−1
1 a2

)(
L2a1a

−1
2

)
,

(
L1a

−1
2

)
(L2a2). (56)

We will see in subsection 4.1.1 that these choices lead to three different, but equivalent,
expressions for X.

3.1.2. B2. To use (52), we need

I�1 = 1, I�2 = 0,

S�1,�1 = 1 + ch2�2 , S�1,�2 = ch�2 , S�2,�2 = 1 + ch�1 , (57)

ch2�1 − O2�1 = ch2�2 , ch2�2 − O2�2 = 1 + ch�1 ,

to find

Y(2) = −L1L2 ch�2 . (58)

This is in agreement with the result of subsection 2.1.3.
The negative terms in (58) reveal incompatibilities between generators. One choice of

incompatible products is

(L1a1)
(
L2a

−1
1 a2

)
, (L1a1)

(
L2a

−1
2

)
,

(
L1a

−1
1 a2

2

)(
L2a

−1
2

)
, (L1)

(
L2a

−1
2

)
. (59)

The sum of these four terms equals L1L2 ch�2 , therefore agreeing with (58).
In subsection 4.1.2, we will relate this choice of incompatible products to a non-negative

expression for X, and an underlying graph.

3.1.3. G2. From subsection 2.1.4,

Y(2) = L2
1(1 + ch�2) + L1L2(1 − ch2�2). (60)

This result can be seen to agree with that calculated using (52).
We will verify in subsection 4.1.3 that the expression (60) encodes the incompatible

products for X. More precisely, we will show that it can be written as a sum of terms

Y(2) = −Y(2)
out,out + Y(2)

in,in − Y(2)
in,out. (61)

The negative terms are incompatible products, either with two outer generators as factors, or
one inner and one outer. Since the factor Z−1 of X does not involve the inner generators, the
allowed products quadratic in the inner generators appear in Y(2); that explains the positive
term.

4. Gaskell character generators from Demazure character formulae

In this section, we follow Gaskell [11] and apply the Demazure character formulae to the
calculation of character generators. We will be able to interpret our results in terms of certain
graphs, as discussed in section 5.

Let us first review the Demazure character formula(e), and set our notation. Demazure [6]
introduced the operators D̂i, i = 1, . . . , r , associated with the simple roots of the Lie algebra
Xr , or the corresponding primitive reflections ri . They are defined by the action

D̂i(a
φ) =


aφ + aφ−αi + · · · + aφ−φiαi , φi � 0;
0, φi = −1;
−aφ+αi − aφ+2αi − · · · − aφ+(|φi |−1)αi , φi � −2.

(62)
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The number of terms in these expansions is |φi + 1|. Alternatively, one can write

D̂i = (1 − a−αi )−1(1 − a−αi r̂i ). (63)

A unique Demazure operator can be defined for every element of the Weyl group W .
Suppose w ∈ W has a reduced decomposition w = s� · · · s2s1. Here each sj = rj ′ is a
primitive reflection. Since the decomposition is reduced, � is the minimum possible length,
the length �(w) of w. Then we can define

D̂w := D̂1′D̂2′ · · · D̂�′ . (64)

Reduced decompositions are not unique, however. For example, the longest element wL of
the su(3) Weyl group W ∼= S3 has two such decompositions:

wL = r1r2r1 = r2r1r2. (65)

But the braid relation that equates them is also satisfied by the Demazure operators:

D̂wL
= D̂1D̂2D̂1 = D̂2D̂1D̂2, (66)

so that D̂wL
can be constructed using either of its reduced decompositions. Such braid

relations are obeyed for any simple Lie algebra, and the operators D̂w are uniquely defined for
any w ∈ W . The basic operators are the D̂i := D̂ri

.

Note, however, that although the braid relations of the Weyl group are obeyed by the
Demazure operators, we have r2

i = 1, but D̂2
i �= 1. Instead

(D̂i)
2 = D̂i, (67)

so that the D̂i are projection operators. It is also very useful to realize that

D̂i(1 + r̂i ) = (1 + r̂i ), (68)

so that D̂i does not change expressions that are r̂i-invariant. Using this fact can reduce
computations significantly.

The Demazure character formula can be written simply as

chλ(a) = D̂L(aλ), (69)

where we have written D̂L := D̂wL
for short. Equivalently, we can write

ĉh = D̂L, (70)

for the operator ĉh introduced in (20).
As an example, consider the su(3) representation of highest weight λ = 2�1 + �2. We

will use the reduced decomposition D̂L = D̂1D̂2D̂1. First,

D̂1a
2�1+�2 = a2�1+�2

+ a2�2
+ a−2�1+3�2

. (71)

Then

D̂2D̂1a
2�1+�2 = (

a2�1+�2
+ a3�1−�2)

+
(
a2�2

+ a�1
+ a2�1−2�2)

+
(
a−2�1+3�2

+ a−�1+�2
+ a−�2

+ a�1−3�2)
. (72)

To avoid generating terms with negative integer coefficients, that will eventually cancel anyway,
we separate out the r̂1-invariant part of this result,(

a2�1+�2
+ a2�2

+ a−2�1+3�2)
+

(
a�1

+ a−�1+�2)
+

(
a−�2)

(73)

before applying D̂1. By virtue of (68), we then need only compute

D̂1
(
a3�1−�2

+ a2�1−2�2
+ a�1−3�2) = (

a3�1−�2
+ a�1

+ a−�1+�2
+ a−3�1+2�2)

+
(
a2�1−2�2

+ a−�2
+ a−2�1)

+
(
a�1−3�2

+ a−�1−2�2)
. (74)
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Figure 1. Action of the Demazure operators D̂i and d̂ i . The weight λ has positive, integer Dynkin
label λi , while µi is a negative integer.

Adding this last result to (73) then gives the character ch2�1+�2(a), without the need for
cancellations between positive and negative terms, as in the Weyl character formula.

Also useful are operators d̂ i , defined by

D̂i =: 1 + d̂ i , d̂ i := (1 − a−αi )−1a−αi (1 − r̂i ). (75)

Their action is

d̂ i (a
φ) =


aφ−αi + aφ−2αi + · · · + aφ−φiαi , φi � 1;
0, φi = 0;
−aφ − aφ+αi − · · · − aφ+(|φi |−1)αi , φi � −1.

(76)

Note that the number of terms in all three of these last expressions is |φi |.
Cartoons of the actions of the Demazure operators are given in figure 1. They make

clear certain relations, such as r̂i D̂i = D̂i, D̂i = d̂ i + 1, r̂i d̂ i = aαi d̂ i , d̂ i r̂i = −d̂ i , etc. The
vertical, dashed line in the figure represents the hyperplane in weight space where the ith
Dynkin label vanishes. The actions are indicated both for a weight λ, with positive Dynkin
label λi , and a weight µ, with µi < 0. Raised, horizontal lines represent strings of terms like
aλ + aλ−αi + · · · + ariλ, with positive coefficients +1. Lowered, horizontal lines correspond to
such strings with −1 as their coefficients. The circles, consisting as they do of a raised and a
lowered part, contribute 0, but emphasize that there is no term aλ in d̂ ia

λ, e.g.
A unique operator d̂w can again be defined for any w ∈ W , using reduced decompositions

of w, if we set

d̂ id (a
λ) = aλ. (77)
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In agreement with (67), we have

d̂2
i + d̂ i = 0, (78)

so that the Demazure character formula (69) can be rewritten as

chλ(a) =
∑
w∈W

d̂w(aλ), (79)

or

ĉh =
∑
w∈W

d̂w. (80)

We will now apply the Demazure character formulae to the calculation of character
generators, following [11]. In his remarkable paper, Gaskell discovered some of the Demazure
results on characters independently, and applied them to character generators. The motivation
was to find formulae that did not involve negative terms and cancellations, such as the general
one (11) due to Patera and Sharp [21]. The relevant minus signs can be traced to the det w
factor in the Weyl character formula (9). As illustrated by the A2 ∼= su(3) example above,
however, the Demazure character formula can avoid such negative terms, and so can lead to
more useful formulae for X.

To save writing, let us introduce the notation

�x� := (1 − x)−1 =
∞∑

n=0

xn. (81)

The generating function for highest weights can be written as

H(L, a) :=
∏
�∈F

(1 − L�a�)−1 =
∏
�∈F

�L�a��, (82)

and the generating function of interest is then

X = ĉh

(∏
�∈F

(1 − L�a�)−1

)
= ĉh(H) = D̂L(H). (83)

This general formula for the character generator was first written by Gaskell [11]. Choosing
a reduced decomposition of D̂L, X can be calculated by successive applications of the basic
Demazure operators D̂i .

To proceed, Gaskell [11] derived the product rule

D̂i(FG) = (D̂iF )G + (r̂iF )(d̂iG). (84)

This also implies

D̂i(FG) = F(D̂iG) + (d̂iF )(r̂iG). (85)

In terms of the operators d̂ i , these identities read as

d̂ i (FG) = (d̂iF )G + (r̂iF )(d̂iG) (86)

and

d̂ i (FG) = F(d̂iG) + (d̂iF )(r̂iG). (87)

For us, the most useful of these product rules will be (85).
To apply the Demazure operators on individual factors of H(L, a) and the results, we

need

d̂ i�F � = �F �d̂ iF �r̂iF � (88)
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Figure 2. The action of the operator D̄i = D̂ia
−αi .

or

D̂i�F � = �F � + �F �d̂ iF �r̂iF �. (89)

D̂i always acts to produce an ri-invariant expression. The right-hand side of the last result
is therefore ri-invariant, although it is not obvious. A manifestly invariant formula can be
written, however, as

D̂i�F � = �F �(1 + D̄iF )�r̂iF �. (90)

Since we will need to write it often, we have defined

D̄i := d̂ i − r̂i . (91)

From the expression (63), we can show that

D̄i = D̂ia
−αi , (92)

demonstrating that D̄i , too, generates ri-invariant expressions. The action of D̄i is depicted in
figure 2.

Before treating examples, let us use Demazure operators to re-derive the new formula
X = Y/Z, with numerator and denominator given by (22) and (12), respectively. Re-write
(83) as

X = D̂L

(
YH

Y

)
= D̂L(Z−1Y). (93)

Since Z is W -invariant, it is annihilated by all the d̂ i . The product rule (85) therefore yields

X = Z−1D̂L(Y) = Z−1ĉh(Y), (94)

the desired result.

4.1. Rank-two simple Lie algebras

The calculations quickly become unwieldy with increasing rank. For simplicity, we will
restrict to consideration of the simple Lie algebras of rank two. We believe our results are
indicative of general properties of the character generators of the simple Lie algebras, however.

We should point out that we make certain choices when we perform our Demazure
calculations, such as the order of factors in the highest-weight generating function H, the
reduced decomposition of wL, and which of the product rules (84)–(85) we apply. Of
course, none of these choices changes the final result, but they can simplify the calculations
substantially, and affect the way the final answer is expressed. It will become clear in section 5
why we make the choices we do, when a connection with graphs is established.
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4.1.1. A2. Choosing the reduced decomposition wL = r2r1r2, we need to calculate

X = D̂LH = D̂2D̂1D̂2(�L2a2��L1a1�). (95)

First consider the application of D̂2. Since �L1a1� is r̂2-invariant, it is unaffected. So,

D̂2(�L2a2��L1a1�) = �L2a2�(1 + D̄2L2a2)
⌊
L2a1a

−1
2

⌋�L1a1�
= �L2a2�

⌊
L2a1a

−1
2

⌋�L1a1�, (96)

where we used (90), and D̄2L2a2 = 0.
When we apply D̂1, �L2a2� is untouched: D̂1�L2a2� = �L2a2�. Using the product rule

(85), we get

D̂1(D̂2(�L2a2��L1a1�)) = �L2a2�
⌊
L2a1a

−1
2

⌋�L1a1�(1 + D̄1L1a1)
⌊
L1a

−1
1 a2

⌋
+ �L2a2�

⌊
L2a1a

−1
2

⌋
d̂1L2a1a

−1
2

⌊
L2a

−1
1

⌋⌊
L1a

−1
1 a2

⌋
, (97)

which simplifies since D̄1L1a1 = 0. At this point, we can save effort by anticipating the
application of D̂2, and rewriting the result as

D̂1(D̂2(�L2a2��L1a1�)) = D̂2(�L2a2��L1a1�)
⌊
L1a

−1
1 a2

⌋
+ �L2a2�

⌊
L2a1a

−1
2

⌋
L2a

−1
1

⌊
L2a

−1
1

⌋⌊
L1a

−1
1 a2

⌋
, (98)

since d̂1L2a1a
−1
2 = L2a

−1
1 . In this last expression, terms that are r̂2-invariant are made plain

by underlines, and all such terms are annihilated by D̂2. This procedure saves considerable
work in more complicated cases.

For A2, we therefore find

D̂2(D̂1(D̂2(�L2a2��L1a1�))) = D̂2(�L2a2��L1a1�)
⌊
L1a

−1
1 a2

⌋(
1 + D̄2L1a

−1
1 a2

)⌊
L1a

−1
2

⌋
+ �L2a2�

⌊
L2a1a

−1
2

⌋
L2a

−1
1

⌊
L2a

−1
1

⌋⌊
L1a

−1
1 a2

⌋
× (

1 + D̄2L1a
−1
1 a2

)⌊
L1a

−1
2

⌋
. (99)

Since D̄2L1a
−1
1 a2 vanishes, the final result is

X = D̂2D̂1D̂2(�L2a2��L1a1�)
= �L2a2�

⌊
L2a1a

−1
2

⌋�L1a1�
⌊
L1a

−1
1 a2

⌋⌊
L1a

−1
2

⌋
+ �L2a2�

⌊
L2a1a

−1
2

⌋
L2a

−1
1

⌊
L2a

−1
1

⌋⌊
L1a

−1
1 a2

⌋⌊
L1a

−1
2

⌋
. (100)

Incidentally, the same result can be found by

Y = D̂LY = D̂1D̂2D̂1Y
= D̂1D̂2

{(
1 − L2a1a

−1
2

)(
1 − L2a

−1
1

)[
D̂1

(
1 − L1a

−1
1 a2

)](
1 − L2a

−1
2

)}
= D̂1D̂2

{(
1 − L2a1a

−1
2

)(
1 − L2a

−1
1

)(
1 − L2a

−1
2

)}
= D̂1

{(
1 − L2a

−1
1

)
(1 − L1a2)

−1 + (1 − L2a2)
(
1 − L2a

−1
1

)
L1a

−1
2

}
= (

1 − L1a
−1
2

)
+ (1 − L2a2)L1a

−1
2 , (101)

for example.
The structure of the generating functions is more easily seen if we write

A = L2a2, B = L2a1a
−1
2 , C = L2a

−1
1 ,

D = L1a1, E = L1a
−1
1 a2, F = L1a

−1
2 ,

(102)

so that

X = �A��B�(�D� + C�C�)�E��F �. (103)
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First, reconsider the three choices of incompatible product displayed in (56). They are
DC,EB and FA, respectively. Expanding the expression of (103) using (81) results in no
terms involving the product DC. Choosing DC as the sole incompatible product for the A2

case therefore leads to (103). Rewriting that expression as Z−1(1 − DC), where

Z−1 = �A��B��C��D��E��F �, (104)

makes clear that the incompatibility DC is related to (103). Similarly, we can write

X = �C��A�(�E� + B�B�)�F ��D� = Z−1(1 − EB)

= �B��C�(�F � + A�A�)�D��E� = Z−1(1 − FA), (105)

corresponding to the other two choices EB and FA, respectively, for the incompatible product.

4.1.2. B2. The longest element of the B2 Weyl group has the reduced decompositions
wL = r1r2r1r2 = r2r1r2r1. Choosing the first, we write

X = D̂LH = D̂1D̂2D̂1D̂2(�L2a2��L1a1�), (106)

and perform the calculations in the same manner as the A2 ones. We get

D̂1D̂2D̂1D̂2(�L2a2��L1a1�) = �L2a2�
⌊
L2a1a

−1
2

⌋�L1a1�
⌊
L1a

−1
1 a2

2

⌋
× (

1 + D̄2L1a
−1
1 a2

2

)⌊
L1a1a

−2
2

⌋⌊
L1a

−1
1

⌋
+ �L2a2�

⌊
L2a1a

−1
2

⌋
L2a

−1
1 a2

⌊
L2a

−1
1 a2

⌋⌊
L1a

−1
1 a2

2

⌋
× (

1 + D̄2L1a
−1
1 a2

2

)⌊
L1a1a

−2
2

⌋⌊
L1a

−1
1

⌋
+ �L2a2�

⌊
L2a1a

−1
2

⌋⌊
L2a

−1
1 a2

⌋
L2a

−1
2

⌊
L2a

−1
2

⌋
× ⌊

L1a1a
−2
2

⌋⌊
L1a

−1
1

⌋
. (107)

Using the notation

A = L2a2, B = L2a1a
−1
2 , C = L2a

−1
1 a2, D = L2a

−1
2 ,

E = L1a1, F = L1a
−1
1 a2

2, G = L1a1a
−2
2 , H = L1a

−1
1 ,

(108)

the B2 character generator takes a compact form. Defining

�AB� := �A��B�, (109)

and similarly for more than two factors, we can write

X = �ABC�D�DGH� + �AB�C�CF �(1 + z)�GH� + �ABEF �(1 + z)�GH�. (110)

Here we have also defined z := D̄2L1a
−1
1 a2

2 = L1 for the sole inside generator required for
the B2 generating function.

The weights of the generators A through H and z are depicted in figure 3. For all character
generators, the generator weights fill out the r fundamental weight diagrams of the relevant
rank-r simple Lie algebra. The two fundamental weight diagrams of B2 are shown in the
figure.

The form of the character generator can be related to the set of incompatible
products obtained above. In terms of the integrity basis elements, the choice (59) gives
{EC,ED,FD, zD} as the set of incompatible products. It is easily seen that the expression
(110) does not contain these products, but does contain all other products quadratic in the
elements of {A,B, . . . , F, z}.
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Figure 3. The B2 fundamental weight diagrams. The weights are labelled by the corresponding
elements of the integrity basis IX .

4.1.3. G2. For G2, wL = r1r2r1r2r1r2 = r2r1r2r1r2r1 are the two reduced decompositions
of the longest element of the Weyl group. We consider

X = D̂LH = D̂1D̂2D̂1D̂2D̂1D̂2(�L2a2��L1a1�) (111)

here. After a lengthy calculation, we find

X = D̂1D̂2D̂1D̂2D̂1D̂2(�A��G�)
= �A��B��G��H�(1 + D̄2H)�I�(1 + D̄1I )�J �(1 + D̄2J )�K��L�

+ �A��B�C�C��H�(1 + D̄2H)�I�(1 + D̄1I )�J �(1 + D̄2J )�K��L�
+ �A��B��C�d̂2C�D��I�(1 + D̄1I )�J �(1 + D̄2J )�K��L�
+ �A��B��G��H�d̂1D̄2H�J �(1 + D̄2J )�K��L�
+ �A��B�C�C��H�d̂1D̄2H�J �(1 + D̄2J )�K��L�
+ �A��B��C�(1 + D̄2C)�D�E�E��J �(1 + D̄2J )�K��L�
+ �A��B��G��H�D̄2d̂1D̄2H�K��L�
+ �A��B�C�C��H�D̄2d̂1D̄2H�K��L�
+ �A��B��G��H�(1 + D̄2H)�I�r̂2d̂1D̄2H�K��L�
+ �A��B�C�C��H�(1 + D̄2H)�I�r̂2d̂1D̄2H�K��L�
+ �A��B��C�d̂2C�D��I�r̂2d̂1D̄2H�K��L�
+ �A��B��C�(1 + D̄2C)�D��E�F �F ��K��L�, (112)

where we have used the following notation for the G2 outside generators:

A = L2a2, B = L2a1a
−1
2 , C = L2a

−1
1 a2

2,

D = L2a1a
−2
2 , E = L2a

−1
1 a2, F = L2a

−1
2 ,

G = L1a1, H = L1a
−1
1 a3

2, I = L1a
2
1a

−3
2 ,

J = L1a
−2
1 a3

2, K = L1a1a
−3
2 , L = L1a

−1
1 .

(113)

The weights of these outside elements (see (15)) of the integrity basis are depicted in
figure 4, where the weight diagrams of the fundamental representations of G2 are drawn. The
other weights are labelled by our notation for the corresponding inside generators.
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Figure 4. The G2 fundamental weight diagrams. The weights are indicated by the elements of IX .

The inside generators, the elements of Iin, make their appearance when we calculate
numerator factors, such as r̂2d̂1D̄2H = j . The final result is therefore

X = �ABGH�(1 + g + h)�I�(1 + z′)�J �(1 + k + �)�KL�
+ �AB�C�CH�(1 + g + h)�I�(1 + z′)�J �(1 + k + �)�KL�
+ �ABC�(z′′ + D)�DI�(1 + z′)�J �(1 + k + �)�KL�
+ �ABGH�i�J �(1 + k + �)�KL�
+ �AB�C�CH�i�J �(1 + k + �)�KL�
+ �ABC�(1 + z′′)�D�E�EJ �(1 + k + �)�KL�
+ �ABGH�z�KL� + �AB�C�CH�z�KL�
+ �ABGH�(1 + g + h)�I�j�KL�
+ �AB�C�CH�(1 + g + h)�I�j�KL�
+ �ABC�(z′′ + D)�DI�j�KL�
+ �ABC�(1 + z′′)�DE�F �FKL�. (114)

Here we have again shortened by using �A��B� =: �AB�, etc.
Now consider the choice of incompatible products underlying this expression for X written

in terms of integrity basis elements. By inspecting (114), we can find the incompatibilities
between outer generators:

{GC,GD,GE,GF,HD,HE,HF, IE, IF, JF }. (115)

None of these products appears in the expansion of any of the terms of (114). Therefore, we
write

Y(2)
out,out = G(C + D + E + F) + H(D + E + F) + I (E + F) + JF. (116)

Similarly, for inner· outer incompatible products, we find

Y(2)
in,out = z′′(G + H) + (z + g + h + i)(D + E + F) + z′(E + F)

+ j (E + F) + (k + �)F + z(I + J ) + iI + jJ. (117)

Compatible inner· inner products give

Y(2)
in,in = (z′′ + g + h)(j + k + � + z′) + i(k + � + z′) + z′(k + �). (118)

Substituting these last three results into (61) verifies the result (60) derived from the general
formula (22).
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5. Character generators, semi-standard tableaux, posets and graphs

By (2), the character generator is the generating function of the multiplicities multλ(σ ):

X =
∑
λ∈P�

∑
σ∈P

Lλaσ multλ(σ ). (119)

Many combinatorial ways of calculating such multiplicities are known, including those
involving Young tableaux and variants. This ‘microscopic’ point of view leads to an improved
understanding of the structure of the character generators. The first to exploit this fact was
Stanley [23], for the algebras Ar

∼= su(r + 1). King [15] extended Stanley’s work to include
the algebras Cr

∼= sp(2r).
Most relevant to us, however, was the connection made explicit by Baclawski [1] to certain

partially-ordered sets, or posets, related to tableaux. A poset P is a set, together with a binary
operation (partial order) �, satisfying reflexivity (x � x,∀x ∈ P), antisymmetry (if x � y

and y � x, then x = y) and transitivity (if x � y and y � z, then x � z). It is a partial order
because two elements x, y ∈ P can be incomparable, i.e. neither x � y nor y � x is true.

The connection with posets was already made in [23], but much less directly than in [1].
Baclawski emphasized its importance and wrote explicit formulae in terms of poset objects.
Later these considerations were generalized to all the classical Lie algebras Ar, Br, Cr,Dr

(or all su(N), so(N), sp(2N)) in [16, 17], using generalized Young tableaux5. At about the
same time, Baclawski and Towber [2] treated the exceptional G2 algebra by introducing a
generalization of a poset.

In the remainder of this section, we will treat the algebras Ar, B2 and G2 in turn. This
first case is the simplest, and best understood.

5.1. Ar
∼= su(r + 1)

Certain posets are encoded in the structure of Young tableaux, and related objects. For
example, consider the algebras Ar

∼= su(r + 1). Their multiplicities multλ(σ ) equal the
number of semi-standard Young tableaux of shape λ and weight σ (see [8], e.g.). These Young
tableaux can be constructed by joining together the semi-standard tableaux of the fundamental
representation, and these fundamental tableaux become the columns of the full semi-standard
tableaux. The only complication is that they must be placed in a certain order.

More precisely, the columns of the semi-standard tableaux, the fundamental tableaux, are
the elements of a poset P . The partial order can be encoded in a so-called Hasse diagram,
a graph whose vertices are the elements of the poset, and whose edges indicate the order
(see [24], e.g.). The poset P is locally finite, meaning it has an order that is completely
determined by its cover relations. x > y is a cover relation if no poset element z exists such
that x > z > y. To every cover relation x > y of the poset P , there is an edge {x, y} in its
Hasse diagram H(P).

The Hasse diagram relevant to su(3) semi-standard tableaux is drawn in figure 5, with the
fundamental semi-standard tableaux drawn where the corresponding vertices would be. They
are lined up horizontally, to make obvious the connection with the semi-standard tableaux for
su(3). Any number of copies of the fundamental tableaux of each kind can be used to build a
valid semi-standard tableaux, as long as the partial order is respected.

Recall that the weight of an integrity basis element, L�aµ, is µ (while the fundamental
weight � is its shape). The weights of the fundamental semi-standard tableaux are the weights
of the integrity basis elements (102) for the character generator. The Hasse diagram can be

5 For a discussion of character generators and tableaux methods with a different emphasis, see [5].
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Figure 5. su(3) Hasse diagram with the fundamental semi-standard tableaux.

Figure 6. Hasse diagram of the su(3) fundamental poset.

Figure 7. Hasse diagram of the su(4) fundamental poset, with the fundamental tableaux indicated
next to the corresponding vertices.

labelled by those basis elements, and then the diagram provides a method of constructing the
generating function directly. For su(3), the resulting Hasse diagram is drawn in figure 6.
The corresponding su(4) ∼= A3 Hasse diagram is shown in figure 7.

Consider the su(3) character generator (103). The two terms are easily seen to correspond
to the two longest paths (or walks) ABDEF and ABCEF on the Hasse diagram from ‘the
beginning’ A, or the greatest element, to ‘the end’, or least element, F. These two paths
correspond to the two maximal chains, or totally ordered sets, A � B � D � E � F and
A � B � C � E � F in the corresponding poset. The two maximal chains are treated in
equal fashion, since

�D� + C�C� = 1 + D�D� + C�C�. (120)
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From this last expression, one can see that the extra factor of C in (103) is necessary to avoid
over-counting.

The point of view just explained was discovered by Baclawski [1], and applied to the
simple algebras Ar and Cr (as well as to U(N)). Using generalized tableaux, character
generators for all classical algebras (Ar, Br, Cr , and Dr ) were studied in [16, 17].

Let us write Baclawski’s results, concentrating on the case of Ar . Denote by P the
poset with fundamental tableaux as elements, the so-called fundamental poset. We can label
the elements of the poset with the corresponding elements of the integrity basis IX, as in
the diagram of figure 6 for su(3). The result is called a labelling of the poset P , since the
labels can be added and multiplied. A multi-chain is a chain with repeated elements, such as
m = A � A � B � D � D � E � F � F � F , where, by abuse of notation, we use the
labels to denote the poset elements. The label of such a multi-chain is easily obtained:

�(m) = �(A � A � B � D � D � E � F � F � F) = A2BD2F 3. (121)

The first result is simply written as

X =
∑

m∈M(P)

�(m), (122)

where M(P) denotes the set of multi-chains of P .
As pointed out above, the relevance to X of maximal chains is immediately obvious. To

write the formula [1] that makes the connection explicit, consider the poset P̂ , the extended
fundamental poset, obtained by adjoining two new elements, 0̂ and 1̂, to the poset P . The
element 0̂ satisfies x � 0̂, and 1̂ obeys 1̂ � x, both for all x ∈ P̂ . The labelling of P̂ that we
use is simply obtained by adjoining the labels �(0̂) = �(1̂) = 1 to the labelling of P .

The links of a poset are relevant here. A chain C of a poset P is called saturated if no
z ∈ P\C exists such that x � z � y for x, y ∈ C, such that C ∪ {z} is a chain. Roughly
speaking, there are no gaps in a saturated chain. A cover relation is a two-element saturated
chain, and a link is a saturated chain with three-elements.

Let Link(P̂) denote the set of links of P̂ . For the su(3) case, we have

Link(P̂) = {1̂ > A > B,A > B > C,A > B > D,B > C > E,

B > D > E,C > E > F,D > E > F,E > F > 0̂}. (123)

A linking of a poset P is a partition of Link(P̂) into two disjoint subsets Link±(P̂), such that,
for every pair x > y in P̂ , there exists a unique saturated chain x = x0 > x1 > · · · > xn−1 >

xn = y, every link of which is in Link+(P̂). For the A2 example, one linking of the poset P is
specified by the choice

Link−(P̂) = {B > C > E}. (124)

Then Link+(P̂) = Link(P̂)\Link−(P̂).
Another concept required for the formula is that of a descent set DS(m), of a maximal

chain m = x0 > x1 > · · · > xn of P̂:

DS(m) := {xi | 0 < i < n and (xi−1 > xi > xi+1) ∈ Link−(P̂)}. (125)

Its label is therefore

�(DS(m)) =
∏

x∈DS(m)

�(x). (126)

Let Max(P̂) denote the set of maximal chains in P̂ . Baclawski [1] proved

X =
∑

m∈Max(P̂)

��(m)��(DS(m)). (127)
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For the extended poset P̂ relevant to A2, Max(P̂) contains two chains, 1̂ > A > B >

D > E > F > 0̂ and 1̂ > A > B > C > E > F > 0̂. For the first, the linking specified by
(124) gives a null descent set, while for the second maximal chain, the descent set is {C}. The
formula (127) therefore immediately reproduces the result (103).

With the alternate choice Link−(P̂) = {B > D > E}, Baclawski’s formula (127) yields
X = �ABCEF � + �AB�D�DEF �, an equivalent form.

Note that for both linkings of the poset P , the product CD is incompatible.
Incompatibilities are fixed by the poset itself, rather than by a choice of linking of P . CD is
an incompatible product because C and D are incomparable in the poset, as is clear from its
Hasse diagram in figure 6.

We should mention that Baclawski [1] also derived formulae of a recursive nature, that
lead to nested expressions for X. Considerably shortened expressions can result this way,
since the sub-poset structure is taken into account. Since our goal is an understanding of the
full character generator and corresponding (generalized) posets, however, we will not study
those formulae here.

In figure 7, the Hasse diagram of the fundamental poset for A3 ∼= su(4) is depicted,
with the vertices labelled by the corresponding fundamental semi-standard tableaux. Using
(122) or (127) on this diagram yields the A3 character generator in straightforward fashion.
Higher ranks involve larger fundamental posets and Hasse diagrams, but do not require any
new important complications.

Clearly, the fundamental poset P encodes the essence of the character generator X, for the
algebras Ar . This poset can also be constructed without reference to semi-standard tableaux.
The alternative construction uses the Weyl group and its Bruhat order (see [14], e.g.). That
means it is more easily adaptable to general simple Lie algebras than are the semi-standard
tableaux relevant to Ar

∼= su(r + 1).
The elements of the poset are in one-to-one correspondence with the weights of the r

fundamental representations of Ar . The poset’s cover relations can be stated simply if the
vertex corresponding to the weight µ in R(�j) is indicated by the triple [�j,µ;w], w ∈ W .
That is, we adjoin a fixed w ∈ W obeying µ = w�j . Of course, there is an ambiguity in the
choice of w for a fixed weight µ of R(�j). Consider, however, the reduced decomposition of
wL used in the Demazure calculation of the character generator. For su(r + 1), we can use

wL = (rrrr−1 · · · r1)(rrrr−1 · · · r2)(rrrr−1 · · · r3) · · · (rrrr−1)(rr ). (128)

This expression motivates the label [�r,�r ; id] and, for the other highest-weight vertices,

[�j,�j ; (rrrr−1 · · · rj+1) · · · (rrrr−1)(rr )], (129)

for j = 1, . . . , r − 1. Note that the length of the adjoined Weyl elements increases as j

decreases in �j . That is, our choice of reduced decomposition for wL induces a total order
on the set F of fundamental weights.

Once the Weyl elements are fixed for the highest-weight vertices, the Bruhat order can
then be used to assign Weyl elements to all the vertices of the required Hasse diagram. The
edges of the Hasse diagram are determined by the cover relations:

[�j,µ;w] → [�i, ν; v], if i = j and w ← v,

or if j = i + 1 and w = v. (130)

Here w ← v indicates a cover relation in the Bruhat partial order on W . See figure 8 for
illustrations of the cases A2 and A3.

Before leaving the Ar algebras, we should mention that the semi-standard tableaux have
significance for the vectors (states) in representations, not just their multiplicities. As is well
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Figure 8. Hasse diagrams for the su(3) and su(4) fundamental posets. Next to the vertices, the
corresponding integrity basis elements are indicated, by their shapes and a Weyl group element
that maps their shape to their weight. For example, (2; 123) indicates shape �2 and weight
r1r2r3�

2 = −�1 + �3, i.e., L2a
−1
1 a3.

known, a vector in an arbitrary irreducible representation of Ar can be constructed from the
vectors of the fundamental representations, which are in turn constructible from the vectors
of the first fundamental (basic) representation. The latter can be labelled by single boxes,
numbered from 1 to r + 1. Totally antisymmetric j -fold tensor products of the basic vectors
yield the vectors of the fundamental representation of highest weight �j . Symmetrizing these,
according to the rows of a fixed Young tableau, produces the vectors of the representation of
highest weight equal to the tableau shape.

Consequently, the generating function X and the related fundamental poset P encode
something of this construction6. Conversely, knowing how to construct the vectors from those
of the fundamental representations, can tell us about the character generator X. As we will
discuss below, the G2 character generator was found this way in [2].

5.2. B2

The Ar case is simple. All fundamental representations are minuscule, i.e., their weights form
a single Weyl orbit W�j . This means, in particular, that there are no inside generators in the
case of Ar .

For the algebra B2, however, there is one inside generator, z := D̄2L1a
−1
1 a2

2 = L1. From
the expression (110), it is clear that this inside generator z is not treated in the same way as
the outer generators A, . . . , H . While X is linear in z, it contains arbitrarily high powers of
each of the outside generators.

6 Arguably, the most important use of the character generator is to tell us about this method of building vectors of
highest-weight representations.
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Figure 9. Hasse diagram of the fundamental-orbit poset of B2.

Figure 10. G2 graph.

As in the A2 case, however, the result (110) can be understood in terms of a graph related
to a poset. We can use the same construction as for A2, including the cover relations (130), as
long as only the elements of the Weyl orbits W�j are included in the poset. For the B2 case,
the Hasse diagram of this poset is drawn in figure 9. We will call the poset so constructed the
fundamental-orbit poset Po.

The connection of (110) to Po is clear. If we modify the labelling of the maximal chains
of Po so that

�(· · · > F > G > · · · ) = · · · F(1 + z)G · · · , (131)

then Baclawski’s formula (127) still works. That is, in maximal chains, we introduce a labelling
of the edge {F,G} of the Hasse diagram connecting vertices F and G, that corresponds to the
cover relation F > G.

The extra labelling has a Demazure interpretation: z = D̄2F and

D̂2�F � = �F �(1 + D̄2F)�r̂iF � = �F �(1 + z)�G�, (132)

by equation (90).
The latter result shows that only the {F,G} edge needs this extra factor, because no outer

generator other than F has a weight with a Dynkin label greater than 1. If generator V has
ith Dynkin label equal to 1, then D̄iV = 0. We can, therefore, extend the labelling to include
all the edges of the Hasse diagram between vertices with weights in the same fundamental
representation. Label with (1 + D̄jV ) the edge {V, r̂jV }. For all cases considered so far,
except V = F , this label is just 1.

5.3. G2

For G2, ‖Iin‖ = 9, so the situation becomes more complicated. That is made plain by looking
at the final expression for X. The fundamental-orbit poset Po has ‖Iout‖ = 12 elements, and is
easily constructed. If, as for B2, we continue to label with (1 + D̄jV ) the edge {V, r̂jV }, there
are many terms recognizable in (114) as coming from the maximal chains of Po. However,
there are many more terms in (114) than there are maximal chains in Po.

To proceed, we introduce new edges to the Hasse diagram of Po, and label the new edges
as needed to produce the expression (114). The result is the graph of figure 10, where only
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the labels of the new edges are indicated. Three new edges are required: the {H, J } edge with
label d̂1D̄2H = i, {I,K} with label r̂2d̂1D̄2H = j , and {H,K} labelled by D̄2d̂1D̄2H = z.
Consider now maximal paths (or walks) on this graph, from the beginning vertex A to the end
F. The terms of (114) can be put in one-to-one correspondence with the maximal paths, so that
a formula of the Baclawski type can still be written, as long as the edge labels are included as
factors.

The final element required is an explanation of the edge labels. They are sums of inside
generators, but which ones? Their individual expressions in terms of Demazure operators are
not particularly illuminating.

However, note that the new edges only relate outside generators to weights from the same
fundamental representation, say R(�), for some � ∈ F . Focus on a vertex L�av� = v̂(L�a�),
where v ∈ W . It is clear that any inside generators with weights in d̂va

� must appear as labels
of edges ending on that vertex.

Consider the label d̂1D̄2H = i of the new {H, J } edge. Since J = r̂1r̂2r̂1G, we
calculate

d̂r1r2r1G = d̂1d̂2d̂1G =: d̂1 2 1G = i + z′ + J. (133)

The inside generator i labels one edge ending on J , while (1 + z′) is the label of the other edge
ending there.

This way, the labels of edges ending on a graph vertex can be found. To determine where
the edges should begin, we simply reverse the process. Start with the outside generator of
lowest weight, L�awL� = ŵL(L�a�),� ∈ F . To work backwards, we need to consider
Demazure operators like the d̂m, but where the role of the simple root αm is taken by its
negative −αm. We denote such a Demazure operator by d̂m, and also use the convention that
d̂� m := d̂�d̂m, etc.

For the {H, J } edge, the generator of lowest weight is L. We calculate

d̂2 1 2 1L = d̂2d̂1d̂2d̂1L = z + i + h + g + H. (134)

Comparing (134) and (133), we see that only i is common, and so i will label the edge
beginning at H and ending on J .

This procedure works for all the new edges. It is easy to find

d̂2 1 2 1G = z + j + k + � + K,

d̂1 2 1L = j + z′ + I, d̂2 1 2 1L = z + i + h + g + H.
(135)

The first two of these results confirm that the {I,K} edge is labelled by j ; the first and third
give z as the {H,K} label.

The nontrivial D̄iV part of the labels (1 + D̄iV ) for the edges {V, r̂iV } of the Hasse
diagram of Po that is contained in our graph, can also be obtained this way.

Our graph, as shown in figure 10, has an obvious resemblance to that devised long ago
by Baclawski and Towber [2], depicted in figure 11. Every element of the integrity basis
(both inside and outside generators) is represented by a vertex in that graph. The Baclawski–
Towber graph is not the Hasse diagram of a poset, however, but rather its generalization for
a generalized poset. The generalization is necessary because an inner generator ι appears at
most linearly in X. That means ι2 is an incompatible product. Incompatibilities correspond to
incomparable elements of a poset, however, and the poset partial order � obeys the reflexivity
property: x � x, for all x in a poset P . For x in a poset, then, x is always comparable to x.

If the partial order � is replaced by a binary relation � without reflexivity; however, a
generator ι can be incomparable to itself. All the inner generators ι do not obey ι � ι, and so ι2

can be an incompatible product. In the generalized poset, the inner generators are incompatible
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Figure 11. The G2 generalized-poset graph of Baclawski and Towber [2].

with themselves, while the outer generators are not. As a consequence, the vertices of the
corresponding graph are not all treated on an equal footing. With this modification, however,
formulae like the poset ones written by Baclawski [1] can also be written for graphs of the
type in figure 11.

In contrast, we prefer to work with a graph more closely related to the Hasse diagram
of the fundamental-orbit poset Po. We do not increase the number of vertices by introducing
new ones for every inner generator, i.e., for every integrity basis element with a weight not
an element of a fundamental Weyl orbit W�,� ∈ F . Instead, we introduce edge labels
involving the inner generators for the edges of the Hasse diagram of Po, and add new edges
(only) with such labels. In our opinion, the resulting graph is simpler than that of [2]; compare
figures 10 and 11. We will call our graph and its generalization to other simple Lie algebras
the character-generator graph, and denote it by GX.

We should point out, however, that just as Baclawski and Towber treat the vertices for
inner and outer generators differently, we do not treat all the edges of GX on equal footing. An
edge between two outer generators related by a primitive reflection rj gets special treatment.
The 1 of the labels (1 + D̄iV ) of the edges {V, r̂iV } must be added.

If we focus on the character generator of the algebra G2 only, our result just amounts to
a slight simplification of that of [2]. On the other hand, an important difference is revealed if
we compare the methods used.

As was discussed above, semi-standard tableaux reveal the poset structure underlying
the su(r + 1) ∼= Ar character generator. They also encode a construction of the vectors of
an irreducible highest-weight representation, using as a basis the vectors of the fundamental
representations. While writing down the vectors of a fixed representation is much more
involved than finding its weights and multiplicities, doing the former does tell us about the
latter, and so about the character of the representation. A general construction, for all highest
weight representations can, therefore, reveal the structure of the character generator.

This construction of vectors is possible for any simple Lie algebra, providing a way to
the character generator of that algebra. In [2], the authors defined what they called a shape
algebra, which is useful for such constructions, but is framed in a more general context. More
importantly for us, they constructed the required basis for G2 explicitly, and were consequently
able to draw the generalized poset graph of figure 11, and write the character generator X.
Their work used the special relation of G2 to the octonions O, however7. It was therefore not
able to yield results in a general form, useful for any simple Lie algebra. Their G2 results

7 The G2 algebra is the algebra of derivations of O. It is true that all the Ar, Br , Cr , Dr , E6, E7, E8, F4 algebras
can be related in a similar way to the four normed division algebras: R, C, the quaternions H, and the octonions O

(see [3], e.g.). Even so, G2 does not fit nicely into the pattern filled out by the others. For example, the E and F
exceptional algebras are elements of the so-called magic square, while G2 is not.
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were not derived or written in terms of objects common to all simple Lie groups and/or their
algebras, like the Weyl group, for example.

Our method, however, is essentially that of Gaskell [9], taking into account the poset
structure of Baclawski [1]. As such it uses only general methods, involving Weyl groups and
their Bruhat order, Demazure operators, and a total ordering of fundamental weights induced
by a reduced decomposition of wL. It therefore leads to results that we believe indicate the
general form of the character generator for all simple Lie algebras.

5.4. General simple Lie algebras—possible universal picture

Let us now sketch the construction of the character-generator graph GX in terms that apply to
an arbitrary simple Lie algebra Xr .

We must emphasize that the construction outlined below has not been proven correct. All
we can say at this point is that it works for the algebras we considered, and is expressed in
universal terms. It therefore has a hope of applying to all simple Lie algebras.

First, construct the fundamental-orbit poset Po. Its elements are in one-to-one
correspondence with the outside generators of the integrity basis (15) for X, and so with
pairs (�,µ), where � ∈ F and µ ∈ W� ⊂ P�, the set of weights (of nonzero multiplicity) in
the fundamental representation R(�). We write

Po = {[�,µ;w] | � ∈ F,µ ∈ P�;w ∈ W such that µ = w�}. (136)

Note that only one Weyl group element is associated with each pair (�,µ), i.e. each element
of Po. The choice of these Weyl elements is not unique; the different possible choices allow
the same character generator X to be described by different posets.

To make one such choice, fix a reduced decomposition of wL, and write it as

wL := sLsL−1 · · · s1, (137)

where each sa is a primitive reflection of W , so that L = �(wL), the length of wL. More
generally, we will use

wL,a := sasa−1 · · · s1. (138)

Set the highest-weight elements of Po to be
[
�j,�j ;w

(j)
max

]
, where w

(j)
max is the longest of the

Weyl group elements wL,a fixing �j : w
(j)
max�

j = �j . Then the remaining elements can be
assigned Weyl group elements using the Bruhat order: [�,µ;w] > [�, ν; v] if w ≺ v.

The reduced decomposition of wL selected also induces a total order � on the fundamental
weights of F. Let ⇒ denote its cover relations. We put �j > �i if �

(
w

(j)
max

)
< �

(
w(i)

max

)
.

The partial order of Po can then finally be fully defined by the cover relations:

[�,µ;w] → [�′, ν; v], if � = �′ and w ← v,

or if � ⇒ �′ and w = v. (139)

Let E(G) and V(G) indicate the edge set and the vertex set, respectively, of a graph G.
The character-generator graph GX is built on the skeleton H(Po). More precisely,

V (GX) = V (H(Po)), E(GX) ⊃ E(H(Po)). (140)

Label the vertices of the Hasse diagram H(Po) of Po using

�([�,µ;w]) = L�aµ. (141)

We will also label the edges of the resulting character-generator graph, using Demazure objects.
First, all edges of the Po Hasse diagram are labelled by 1. Additional labels are introduced as
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follows, and they will add to the 1s already present, or label new edges of GX ⊃ H(Po), when
they do not vanish.

The edge labels and the ‘new’ edges, the elements of E(GX)\E(H(Po)), are found using
Demazure calculations. Suppose that T = L� and B = ŵLT indicate the top and bottom
vertices of the same shape � ∈ F . Consider the vertices V1 and V2, with V1 > V2 in H(Po).
Suppose further that V1 = b̂1B, and V2 = t̂2T , with b1, t2 ∈ W . Calculate d̂ t2T and d̂b1B.
Denote the sum of terms common to both as

d(V1, V2) := d̂b1B ∩ d̂ t2T . (142)

If d(V1, V2) �= 0, then {V1, V2} will belong to E(GX).
The labels of the edges of GX are given by

�̃({V1, V2}) =
{

1 + d(V1, V2), if {V1, V2} ∈ E(H(Po));
d(V1, V2), if {V1, V2} �∈ E(H(Po)).

(143)

We can write a formula analogous to (127) for the general case if we consider GX the Hasse
diagram of a poset PX. The new poset PX has the same elements as the fundamental-orbit
poset Po, but its cover relations are those of Po augmented by those encoded in the new edges
of GX.

Maximal chains in PX are relevant here, but their labels must include the edge labels as
factors, along with those of the vertices. We define

�̃(· · · V1 > V2 · · · ) := · · · �̃(V1)�̃({V1, V2})�̃(V2) · · · . (144)

The symbol �̃ indicates the labelling of GX, to distinguish it from the labelling � of Po.
We need the extended poset P̂X, and its labelling. But its labelling is trivially different

from that of PX: vertices 1̂ and 0̂, and the two extra edges involving them, are all assigned 1
as labels. We will also use �̃ for the labels of P̂X.

Incompatible products are treated in (127) using linkings of the extended poset P̂ and the
resulting descent sets, defined in (125). In the general case, only incompatibilities between
two outside generators need to be handled this way. Therefore, it is the linking of P̂o that is
relevant. Suppose m is a maximal chain in P̂X. Then we define

DSo(m) := {xi | 0 < i < n and (xi−1 > xi > xi+1) ∈ Link−(P̂o)}. (145)

Finally, we are able to write

X =
∑

m∈Max(P̂X)

��̃(m)��(DSo(m)). (146)

Here the shorthand notation of (81) and (109) only applies to the vertex factors:

��̃(· · ·V1 > V2 · · · )� := · · · ��̃(V1)��̃({V1, V2})��̃(V2)� · · · . (147)

The formula (146) for the character generator X is one of our main results. Hopefully,
our conjecture generalizes Baclawski’s formula (127) so that it can be applied to any simple
Lie algebra.

6. Conclusion

Let us first summarize our main results. A new, universal formula was derived for the character
generator of a simple Lie algebra. The character generator X is expressed as the ratio X = Y/Z,
with the simple denominator given by (12), and the numerator by (22), or, equivalently, by
(27) and (25). The new formula does not involve a sum over the Weyl group, and so is a
simplification of the Patera–Sharp formula. It a also makes clear the distinct roles of the
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inside and outside generators, and can serve as a guide to incompatible products, as section 3
indicates.

In the second part of this paper, the general, Demazure methods of Gaskell [11] were
exploited, and connected with the (generalized-)posets underlying the character generator
[1, 2, 15–17, 23]. Graphs were found that are simplified versions of those introduced by
Baclawski–Towber [2], from which the character generators can be determined easily. In
particular, the required labelling of the edges of these graphs is given by simple Demazure
calculations. By combining the universal Demazure–Gaskell approach with the graph structure
of the character generators, we were able to formulate a general conjecture, that we hope is
applicable to all simple Lie algebras. Thus, non-negativity did not have to be sacrificed to
attain universality. The general formula is equation (146), and it is explained in the rest of
subsection 5.4.

Our second main result is only a conjecture, and clearly lacks rigour. Possible future
work therefore includes proving (146). Induction may be helpful, and one might be able to
extend our result to a generalization of the character generator:

Xw := D̂wH, w ∈ W. (148)

Here XwL
= X.

Alternatively, the general character formulae of Littelmann, written in terms of minimal
defining chains [18] and Lakshmibai–Seshadri paths [19], could provide another route to the
character generators, and a proof.

The character-generator formulae could also be investigated to see what they tell us
directly about the characters themselves. Can a new character formula be written? Can one
derive new identities involving the characters? The relation of the character generators and
the corresponding integrity bases to bases of states (or vectors) in irreducible highest-weight
representations should also be understood.

There is a fundamental correspondence found by C Greene (see [4] for a review) that
associates with every finite poset a Young tableau, or Ferrers shape. It would be interesting
to try to apply the correspondence, or a modified version thereof, to the (generalized-)posets
underlying the character generators. A significantly more economical presentation of the
character generators might result. We suspect that in the simplest cases, the early results of
Stanley [23] and King [15] would be recovered.

Let us conclude by describing an application of character generators that was the original
motivation for this work. Two-dimensional conformal field theories [7] have been intensely
investigated for quite some time now. Important examples, the Wess–Zumino–Witten models,
are intimately related to simple Lie algebras. Their so-called modular data (see [7, 9, 10]),
including their fusion eigenvalues, are fundamental characteristics. But the fusion eigenvalues
of Wess–Zumino–Witten models coincide with the characters of simple Lie algebras, evaluated
at certain finite-order elements of the corresponding Lie group. Thus the character generator
of a simple Lie algebra can be used to study Wess–Zumino–Witten fusion eigenvalues. One of
us (MW) hopes to make progress in this direction. The work [20] studied character generators
for elements of finite order and so should be helpful.
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